If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+6k-35=-2
We move all terms to the left:
k^2+6k-35-(-2)=0
We add all the numbers together, and all the variables
k^2+6k-33=0
a = 1; b = 6; c = -33;
Δ = b2-4ac
Δ = 62-4·1·(-33)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{42}}{2*1}=\frac{-6-2\sqrt{42}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{42}}{2*1}=\frac{-6+2\sqrt{42}}{2} $
| 4x+15=x+10 | | 3(3x-2)=3 | | 15x+12=12x+30 | | 2x+6+x-12=90 | | 2-4x+3=-2x-10 | | 3(x+4)+13=2(x+3) | | x(x-8)=513 | | s/3=44 | | (2x+8)/3=4x-4 | | 7x-(2x-8)=43 | | 10x-20=9x+8 | | 7/10x=2=16 | | x*1.4=3999 | | 2x+(-2)=2x+4 | | 6−2w=4 | | 43=54−n | | 7x-8=4x+10= | | 130+x=120 | | 9+9q=8q | | 9/10+6w=9/10 | | 2x+9=5x+4= | | -8(x+3)+5=-19 | | 8u-7=15u-49 | | 87.9+x=180 | | g3− 3=1 | | 19.5+x=90 | | -4n-9=21 | | 110(x+17)=−2(2−x) | | 112-x=180 | | 2b+15=24+b | | 186=62x | | 0.12(x+3000)=5880 |